Large-eddy simulation of a reacting swirling flow in a model combustion chamber
نویسندگان
چکیده
Abstract We perform Large-eddy simulations of a non-premixed swirling flame in model combustion chamber with air bulk flow at Re = 15000 and central pilot low-velocity jet methane using the Flamelet-generated manifold model. The unsteady behaviour this regime is well reproduced based on dynamics. distribution turbulent kinetic energy suggests presence intensive vortical structures typical high-swirl flows similar to precessing vortex core.
منابع مشابه
effect of sub-grid scales on large eddy simulation of particle deposition in a turbulent channel flow
چکیده ندارد.
15 صفحه اولLarge eddy simulation of propane combustion in a planar trapped vortex combustor
Propane combustion in a trapped vortex combustor (TVC) is characterized via large eddy simulation coupled with filtered mass density function. A computational algorithm based on high order finite difference (FD) schemes, is employed to solve the Eulerian filtered compressible Navier-Stokes equations. In contrast, a Lagrangian Monte-Carlo solver based on the filtered mass density function is inv...
متن کاملLarge-eddy simulation of kerosene spray combustion in a model scramjet chamber
Large-eddy simulation (LES) of kerosene spray combustion in a model supersonic combustor with cavity flame holder is carried out. Kerosene is injected through the ceiling of the cavity. The subgrid-scale (SGS) turbulence stress tensor is closed via the Smagorinsky’s eddyviscosity model, chemical source terms are modelled by a finite rate chemistry (FRC) model, and a four-step reduced kerosene c...
متن کاملTowards Petascale Large Eddy Simulation of Reacting Flow
A novel computational methodology, termed “Irregularly Portioned Lagrangian Monte Carlo-Finite Difference” (IPLMCFD) is developed for large eddy simulation (LES) of turbulent flows. This methodology is intended for use in the filtered density function (FDF) formulation and is particularly suitable for simulation of chemically reacting flows on massively parallel platforms. The IPLMCFD facilitat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of physics
سال: 2021
ISSN: ['0022-3700', '1747-3721', '0368-3508', '1747-3713']
DOI: https://doi.org/10.1088/1742-6596/2119/1/012031